D 7.3 – Standardization Proposal

Summary: This deliverable describes standardization activities carried out within the project. Our contribution in this respect is twofold: i) RDF Data Cube Vocabulary & PROV Ontology and ii) the Visual Analytics Vocabulary. The former effort was driven by UNI PASSAU where official implementation reports have been provided within the standardization process of the RDF Data Cube Vocabulary and extensions are proposed. Visual Analytics Vocabulary was developed by the Know-Center to semantically describe visualisation components. Given statistical data sets described with the Data Cube Vocabulary, automatic visualisation of such data sets becomes possible by mapping of the data onto suitable visualisation and visual properties.
Statement of originality: This document contains original unpublished work except where clearly indicated otherwise. Acknowledgement of previously published material and of the work of others has been made through appropriate citation, quotation or both.

This document reflects only the author’s views and the European Community is not liable for any use that might be made of the information contained herein. © CODE Consortium, 2012
Project Officer & Project Coordinators

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Officer</td>
<td>Stefano Bertolo</td>
<td></td>
</tr>
<tr>
<td>Project Coordinator</td>
<td>Stefanie Lindstaedt</td>
<td>Inffeldgasse 21a, 8010 Graz, Austria</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+43 (316) 873-9250 (phone)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+43 (316) 873-9254 (fax)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>slind@know-center.at</td>
</tr>
<tr>
<td>Scientific Coordinator</td>
<td>Michael Granitzer</td>
<td>Innstrasse 33, D-94032 Passau</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+49(0)851-509-3305</td>
</tr>
<tr>
<td></td>
<td></td>
<td>michael.granitzer@uni-passau.de</td>
</tr>
</tbody>
</table>

Document Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Author</th>
<th>Organization</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Draft</td>
<td>2014-04-07</td>
<td>V. Sabol</td>
<td>Know-Center</td>
<td>Document structure, summary</td>
</tr>
<tr>
<td>2nd Draft</td>
<td>2014-04-11</td>
<td>B. Mutlu</td>
<td>Know-Center</td>
<td>Visual Analytics Vocabulary</td>
</tr>
<tr>
<td>3rd Draft</td>
<td>2014-04-20</td>
<td>V. Sabol</td>
<td>Know-Center</td>
<td>Review Visual Analytics Vocabulary</td>
</tr>
<tr>
<td>4th Draft</td>
<td>2014-04-29</td>
<td>F. Stegmaier</td>
<td>UNI PASSAU</td>
<td>Added standardization efforts from UNI PASSAU</td>
</tr>
<tr>
<td>5th Draft</td>
<td>2014-04-29</td>
<td>F. Stegmaier</td>
<td>UNI PASSAU</td>
<td>Finalized deliverable.</td>
</tr>
<tr>
<td>Final Version</td>
<td>2014-04-30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

1 Introduction - 3 -

2 Data Cubes & Provenance information - 4 -

3 Visual Analytics Vocabulary - 6 -
3.1 SEMANTIC DESCRIPTIONS FOR VISUAL ANALYTICS COMPONENTS - 6 -

4 Future Work - 10 -

5 References - 11 -

6 Appendix A: Data Extraction Microformat - 12 -

7 Appendix B – Visual Analytics Ontology - 13 -
1 Introduction

The dissemination and exploitation plan of the CODE projects WP7 foresees the engagement of participating peers in standardization efforts and community projects towards the end of the project. In this sense, we identified two major bodies for this task: W3C to support international standardization as well as the Open Knowledge Foundation serving as well-grounded community platform in terms of Open Data. With respect to the developed prototypes, the following standardization tasks have been identified, initiated and partly finished:

- Implementation report for the RDF Data Cube Vocabulary
- Extensions to the RDF Data Cube Vocabulary and the PROV Ontology
- Specification of the Data Extraction Microformat
- Specification of the Visual Analytics Vocabulary

The reminder of this deliverable is as follows: Section 2 focuses on the standardization efforts in terms of the RDF Data Cube Vocabulary as well as extensions for the PROV Ontology. The specification of the Visual Analytics Vocabulary is part of Section 3. The planned standardization inputs will be discussed as future work in Section 4 whereas both appendices contain the serializations of the proposed vocabularies.
2 Data Cubes & Provenance information

As outlined in Deliverables D3.1, D3.3 and D3.4 of the CODE project, all services heavily utilize the two recent W3C specifications RDF Data Cube Vocabulary\(^1\) and the PROV Ontology\(^2\). In this regard, two main standardization efforts are recognizable:

- Implementation report, which is added to the official W3C space
- Proposed changes / extensions to both vocabularies

The RDF Data Cube Vocabulary is utilized within the whole CODE project to reach a homogeneous data integration of primary research data as well as to generate an OLAP-aware storage. Besides, this standardized data model also fosters the interaction with consuming peers, such as the envisioned visual analytics component.

The details of the evaluation can be found in Table 1. If an integrity constraint has failed, an explanation has been added.

Table 1: Details on the integrity constraints test

<table>
<thead>
<tr>
<th>Test case</th>
<th>Result</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC-1. Unique DataSet</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>IC-2. Unique DSD</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>IC-3. DSD includes measure</td>
<td>Fail</td>
<td>:Water_level a rdf:Property , qb:MeasureProperty ;</td>
</tr>
<tr>
<td>IC-4. Dimensions have range</td>
<td>Fail</td>
<td>Range not yet defined in the prototype.</td>
</tr>
<tr>
<td>IC-5. Concept dimensions have code lists</td>
<td>Pass</td>
<td>Code lists are not used.</td>
</tr>
<tr>
<td>IC-6. Only attributes may be optional</td>
<td>Pass</td>
<td>qb:AttributeProperty are not yet used.</td>
</tr>
<tr>
<td>IC-7. Slice Keys must be declared</td>
<td>Pass</td>
<td>Slices are not used.</td>
</tr>
<tr>
<td>IC-8. Slice Keys consistent with DSD</td>
<td>Pass</td>
<td>See IC-7</td>
</tr>
<tr>
<td>IC-9. Unique slice structure</td>
<td>Pass</td>
<td>See IC-7</td>
</tr>
<tr>
<td>IC-10. Slice dimensions complete</td>
<td>Pass</td>
<td>See IC-7</td>
</tr>
<tr>
<td>IC-11. All dimensions required</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>IC-12. No duplicate observation</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>IC-13. Required attributes</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>IC-14. All measures present</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>IC-15. Measure dimension consistent</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>IC-16. Single measure on measure dimension observation</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>IC-17. All measures present in measures dimension cube</td>
<td>Pass</td>
<td></td>
</tr>
</tbody>
</table>

\(^2\) http://www.w3.org/TR/prov-o/
While implementing the prototypes, we recognized the need for extensions within both specifications to better fit to further processing:

- **RDF Data Cube Vocabulary**: Originally, the `rdfs:range` definition of a dimension property can point to an arbitrary concept or literal type. To normalize this behaviour, the generic concept `entity` was introduced. An entity then always provides a `rdfs:label` and additionally the disambiguated concept for this resource. Therefore, there is always a human readable label available and the concept is used for identification purposes.

- **PROV-O**: The elements of PROV-O were reused with the prefix `prov`. The `prov:wasDerivedFrom` property is used to denote the relevant source cubes, if the current cube is produced by integrating multiple cubes. Activity and agent for the cube construction are denoted by `prov:wasGeneratedBy` and `prov:wasStartetBy`. An identifier then identifies the agent.

Within the prototypes of WP3, a major focus was the lifting of un- or semi-structured primary research data into 5 Star Open Data\(^4\). Within this workflow, we recognized the need for a vocabulary to save the annotations during the semi-automatic lifting process. Here, a microformat has been specified that allows enrichment and annotation of tabular data (HTML5 tables) using HTML5 custom data-attributes and is specifically designed for the data extraction and triplification chain of the CODE research project in the filed of linked open data. The annotations include provenance information for trust and traceability and qualify semantic concepts of the content for interlinking purpose. To ensure interoperable services, such a microformat is highly beneficial, esp. in the Web domain. The current specification can be found in Chapter 6 and a constantly updated version is hosted in the CODE space:

http://code-research.eu/dataextraction/microformat

\(^3\) http://www.w3.org/2011/gld/wiki/Data_Cube_Implementations

\(^4\) http://5stardata.info/
3 Visual Analytics Vocabulary

Describing visualizations semantically has been recognized as a very effective way for querying and analyzing data visually [2]. Because of tight coupling between visualizations and statistical data achieved in this way, the querying is considerably simplified and the data can be directly mapped onto visualizations.

The RDF-based description of the visualizations has following advantages:

1. it provides a common persistence model for representing visualizations that can be used by various visualization technologies
2. it allows to query existing visualizations enriched with data — therefore, visualizations are created only once
3. it is possible to interlink visualizations with each other and to combine them within a single user interface

Semantic description of visualizations using RDF is a new research topic and the related work, up to now, remains scarce. The most significant research contribution, the Statistical Graph Ontology (SGO) [3], comes from the biomedical domain, and presents a new approach to manage statistical graph knowledge by semantic annotation of graphs. The aim of this work is to make statistical graphs available as highly structured representation that can be queried and exchanged using Semantic Web technologies.

While SGO provides a sophisticated ground for describing statistical graphs, some attribute are missing to enable automated visualization like the attribute `datatype, instantiation occurrence` etc. This is why we extended the SGO Vocabulary and defined our own Visual Analytics Vocabulary [6]. The extensions help us to build a model that defines the mapping between research data and visualizations. The goal of the Visual Analytics Vocabulary is to integrate visualizations into CODE platform and to relate them to the research data.

3.1 Semantic Descriptions for Visual Analytics Components

Based on our analysis of related work and existing standards, and on the choice of using the RDF Data Cube Vocabulary for representing the underlying data sets, the Visual Analytics Vocabulary consists of the following parts:

1. Description of visualizations and their visual elements
2. Description of data points and data sources taken from the RDF Data Cube Vocabulary (http://purl.org/linked-data/cube#)
3. A mapping between RDF Data Cubes and Visual Analytics Vocabulary

The following abbreviations and namespaces are used:

- sio (SemanticScience Integrated Ontology, http://semanticscience.org/ontology/sio.owl)
- rdf, rdfs (Core RDF namespaces)
- dc (Dublin Core Metadata Initiative, http://purl.org/dc/terms/)

The VA Vocabulary has been defined in the form of an OWL (Web Ontology Language) ontology.

In our context, the semantic description offers the way of knowing simple facts about visualizations. The semantic description strictly focuses on describing the visual encoding process; hence we represent visualisations in terms of their visual channels (visual properties). Hereby, we undertake a semantic description of well-established semiotic principles, e.g. visual channels [4]. However,
instead of pursuing a thorough specification encompassing all known facts about visual perception, we concentrate on pragmatic, simple facts that will aid the sensible mapping [5], extending the description to many different types of visualisations.

Thus, we have separated our VA Vocabulary into two parts:

1. the model of an abstract visualisation (i.e. an abstract visualisation type) that captures only the commonalities, which are shared between all concrete visualisations and
2. concrete visualisation models, which capture just specific information. These concrete visualisation models refine the abstract model depending on the visualisation type.

The abstract visualisation specifies most important structural components that any concrete visualisation may have. These are:

- Name: Identification for a visualisation.
- Visual Channel: A container for data, which have to be visualised. It contains structural rules required to correctly map statistical data to a visualisation. For example, a visual channel for a bar chart is defined to represent its x-axis and y-axis.
- Description: A collection of non-mandatory components (e.g. textual description or image such as SVG figure for a concrete visualisation).

The difference between concrete visualisations lies in its reification of visual channels. For example, the bar chart has only two visual channels, x-axis and y-axis. According to their type definition, y-axis always represents a numeric (e.g. decimal, float, integer, etc.), whereby x-axis has more supported types (string for example). Further, this visualisation will be suggested only if suitable data is provided for both visual channels (we say here, they are instantiated). In the case of bar chart, both visual channels are mandatory. In contrast, the parallel coordinates, requires at least one x-axis, while the additional instances of that visual channel are optional, a characteristic shared by Jquery Table visualisation and the Scatterplot matrix.

To capture such differences in our VA Vocabulary, we characterize visual channels with the following attributes:

- Data type: Defines a set of primitive data types that a visual channel can support.
- Occurrence: Defines the cardinality of a visual channel (i.e. how many instances are allowed for the concrete visual channel).
- Persistence: Defines whether a visual channel is mandatory part of the concrete visualisation or not.

The occurrence attribute identifies whether a visual channel can be instantiated only once (e.g. bar chart x-axis and y-axis, see Figure 1) or multiple times (e.g. parallel coordinates x-axis, see Figure 2). There are two different values for this attribute: one and many. The occurrence many is used for visualising high-dimensional RDF Data Cubes. In contrast, the occurrence one defines a fixed cardinality. Another important role of the occurrence is that it reveals the structure of the concrete visualisation.
Figure 1: Bar chart has visual attributes x-axis and y-axis both with occurrence one

Figure 2: Parallel coordinates has only one visual attribute x-axis with the occurrence many.
The persistence attribute helps define more complex cases, e.g. a visualisation with three mandatory and two optional visual channels. Hereby, the case with the parallel coordinates can be alternatively defined as follows: one mandatory visual channel with the occurrence one, and another one, which has an occurrence many and no persistence.

Based on this information described in these attributes, we are able to define the integration of the visualisation with the data (i.e. whether an appropriate visualisation exists for a given RDF Data Cube).
4 Future Work

As shown, the outlined vocabularies are able to heavily support Web-enabled data extraction as well as visualization processes. Currently, the dissemination of those vocabularies is mostly limited to the scientific domain, but will be recently communicated to standardization bodies and the Semantic Web community. In detail, the following is planned:

- Since the standardization process on the RDF Data Cube Vocabulary has been recently finished, we will initiate activities to release our proposed extensions as errata to the original specification within summer 2014.

- The microformat will be communicated to the mailing lists in order to discuss its value with the community.

- The Visual Analytics Vocabulary is currently included in Linked Open Data Vocabulary\(^5\) of the Open Knowledge Foundation and is also being considered with Parrot\(^6\) (a RIF and OWL documentation service).

\(^5\) http://lov.okfn.org/dataset/lov/details/vocabulary_va.html

5 References

6 Appendix A: Data Extraction Microformat

Attributes:
1. data-code-title
2. data-code-agent
3. data-code-url
4. data-code-component
5. data-code-range
6. data-code-type
7. data-code-source
8. data-code-activity

1. data-code-title
 Defines a human readable label for the extracted dataset.
 Restricted on: <table>
 Value: <String>

2. data-code-agent
 Defines the person that bears responsibility for the data extraction.
 Restricted on: <table>
 Value: <URL> (currently we support Mendeley profile url)

3. data-code-url
 Defines the linked data concept for the value of the cell or table semantic.
 Restricted on: <table> or <td>
 Value: <URL>

4. data-code-component
 Defines the structure type of this cell. It can be a dimension or an observation values.
 Restricted on: <td>

5. data-code-range
 Defines the super or general concept of this cell value e.g. 0.3 could be code:typePercentage.
 Restricted on: <td>
 Value: <URL>

6. data-code-type
 Qualifies and interprets the cell value. Enables specification of a data type like String or Integer.
 Restricted on: <td>
 Value: <URL>

7. data-code-source
 Defines the source of extracted data. E.g. link to a research paper.
 Restricted on: <td>
 Value: <URL> (currently we support Mendeley library links)

8. data-code-activity
 Specifies whether and how the source data was modified.
 Restricted on: <td>
 Value: <URL>
7 Appendix B – Visual Analytics Ontology

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix xs: <http://www.w3.org/2001/XMLSchema#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix dc: <http://purl.org/dc/elements/1.1/>.
@prefix dcterms: <http://purl.org/dc/terms/>.
@prefix code: <http://code-research.eu/ontology/visual-analytics>.
@prefix sio: <http://semanticscience.org/ontology/sio.owl>.
@prefix va: <http://code-research.eu/ontology/visual-analytics#>.
@prefix qb: <http://purl.org/linked-data/cube#>.

<http://code-research.eu/ontology/visual-analytics> a owl:Ontology;
 owl:versionInfo "0.1.20121122";
 rdfs:label "The Visual Analytics Vocabulary";
 rdfs:comment "This vocabulary allows the semantic description of visual analytics applications. It is based on the RDF Data Cube Vocabulary and the Semanticscience Integrated Ontology."
 dcterms:created "2012-10-31"^^xs:date;
 dcterms:modified "2013-06-01"^^xs:date;
 .

=== Classes ===================================

=== General Classes

va:Chart a rdfs:Class, owl:Class;
 rdfs:label "Chart"@en;
 rdfs:comment "Is the graphical representation of numerical or qualitative data."@en;
 owl:equivalentClass sio:SIO_000904;
 va:hasChartName va:ChartName;
 va:supportedDimension va:SupportedDimension;
 va:hasVisualChannel va:VisualChannel;
 rdfs:isDefinedBy <http://code-research.eu/ontology/visual-analytics>;
 .

va:VisualChannel a rdfs:Class, owl:Class;
 rdfs:label "Visual channel"@en;
 rdfs:comment "Represents a visual dimension of a chart."@en;
 rdfs:isDefinedBy <http://code-research.eu/ontology/visual-analytics>;
 va:hasDataType va:DataType;
 va:hasOccurrence va:Occurence;
 va:hasPersistence va:Persistence;
 .

va:ChartName a rdfs:Class, owl:Class;
 rdfs:label "Chart Name"@en;
 rdfs:comment "Represents the name of a chart."@en;
 rdfs:subClassOf va:Chart;
 rdfs:isDefinedBy <http://code-research.eu/ontology/visual-analytics>;
 .

va:Axis a rdfs:Class, owl:Class;
 rdfs:label "Axis"@en;
 rdfs:comment "Is a line segment that is part of a chart in which the position along the line corresponds to a numeric or categorical value."@en;
 rdfs:subClassOf va:VisualChannel;
 owl:equivalentClass sio:SIO_000450;
 rdfs:isDefinedBy <http://code-research.eu/ontology/visual-analytics>;

30/04/2014 - 13 -
va:Color a rdfs:Class, owl:Class;
 rdfs:label "Color"@en;
 rdfs:comment "Represents a visual dimension of a chart."@en;
 rdfs:subClassOf va:VisualChannel;
 rdfs:isDefinedBy <http://code-research.eu/ontology/visual-analytics>;
 .

va:Size a rdfs:Class, owl:Class;
 rdfs:label "Size"@en;
 rdfs:comment "Represents a visual dimension of a chart."@en;
 rdfs:subClassOf va:VisualChannel;
 rdfs:isDefinedBy <http://code-research.eu/ontology/visual-analytics>;
 .

va:Symbol a rdfs:Class, owl:Class;
 rdfs:label "Symbol"@en;
 rdfs:comment "Represents a visual dimension of a chart."@en;
 rdfs:subClassOf va:VisualChannel;
 rdfs:isDefinedBy <http://code-research.eu/ontology/visual-analytics>;
 .

va:DataType a rdfs:Class, owl:Class;
 rdfs:label "Data type"@en;
 rdfs:comment "Data type identifies a type of data represented in chart's visual channel."@en;
 rdfs:isDefinedBy <http://code-research.eu/ontology/visual-analytics>;
 .

va:Persistence a rdfs:Class, owl:Class;
 rdfs:label "Persistence"@en;
 rdfs:comment "Persistence denotes whether a visual channel is permanently present in the chart and must be specified or it might be defined if needed."@en;
 rdfs:isDefinedBy <http://code-research.eu/ontology/visual-analytics>;
 .

va:Occurrence a rdfs:Class, owl:Class;
 rdfs:label "Occurrence"@en;
 rdfs:comment "Occurrence denotes whether a visual channel can be set only one times or multiple times."@en;
 rdfs:isDefinedBy <http://code-research.eu/ontology/visual-analytics>;
 .

va:Mandatory a rdfs:Class, owl:Class;
 rdfs:label "Mandatory Persistence"@en;
 rdfs:comment "Denotes that a visual channel must be specified."@en;
 rdfs:subClassOf va:Persistence;
 rdfs:isDefinedBy <http://code-research.eu/ontology/visual-analytics>;
 .

va:Optional a rdfs:Class, owl:Class;
 rdfs:label "Optional Persistence"@en;
 rdfs:comment "Denotes that a visual channel must be specified."@en;
 rdfs:subClassOf va:Persistence;
 rdfs:isDefinedBy <http://code-research.eu/ontology/visual-analytics>;
 .

va:One a rdfs:Class, owl:Class;
 rdfs:label "Occurrence one"@en;
 rdfs:comment "Denotes that a visual channel can only be set at one times."@en;
 rdfs:subClassOf va:Occurrence;
 rdfs:isDefinedBy <http://code-research.eu/ontology/visual-analytics>;
 .
va:Multiplicity a rdfs:Class, owl:Class;
 rdfs:label "Occurrence multiplicity"@en;
 rdfs:comment "Denotes that a visual channel can set at multiple times."@en;
 rdfs:subClassOf va:Occurrence;
 rdfs:isDefinedBy <http://code-research.eu/ontology/visual-analytics>;

va:SupportedDimension a rdfs:Class, owl:Class;
 rdfs:label "Supported dimension"@en;
 rdfs:comment "Denotes how many dimensions can be visualize by a chart."@en;
 rdfs:subClassOf va:Chart;
 rdfs:isDefinedBy <http://code-research.eu/ontology/visual-analytics>;

--- Mapping-Specific Classes -------------------------------

va:Mapping a rdfs:Class, owl:Class;
 rdfs:label "Mapping"@en;
 rdfs:comment "This class contains all mappings created for an RDF Data Cube."@en;
 va:hasComponentMapping va:ComponentMapping;
 rdfs:isDefinedBy <http://code-research.eu/ontology/visual-analytics>;

va:ComponentMapping a rdfs:Class, owl:Class;
 rdfs:label "Component mapping"@en;
 rdfs:comment "Represents a mapping for a particular chart."@en;
 va:representsChart va:MappedChartName;
 va:hasComponentMapping va:ComponentMapping;
 rdfs:isDefinedBy <http://code-research.eu/ontology/visual-analytics>;

--- Dashboard-Specific Classes -------------------------------

va:Dashboard a rdfs:Class, owl:Class;
 rdfs:label "Dashboard"@en;
 rdfs:comment "Represents a collection of one or more charts that visualize the same Data Cube."@en;
 rdfs:isDefinedBy <http://code-research.eu/ontology/visual-analytics>;

--- Properties ---

--- General Properties ---------------------------------------

va:unit a rdf:Property, owl:ObjectProperty;
 rdfs:label "Unit"@en;
 rdfs:comment "Defines the unit measure of a visual channel."@en;
 rdfs:domain va:VisualChannel;
 rdfs:range rdfs:Resource;
 rdfs:isDefinedBy <http://code-research.eu/ontology/visual-analytics>;

owl:Restriction owl:onProperty va:unit;
 owl:minCardinality 1;
 owl:maxCardinality 1;

va:hasDataType a rdf:Property, owl:ObjectProperty;
rdfs:label "Has data type"@en;
 rdfs:comment "Defines which data type a visual channel has."@en;
 rdfs:domain va:VisualChannel;
 rdfs:range va:DataType;
 rdfs:is DefinedBy <http://code-research.eu/ontology/visual-analytics>;
 .

owl:Restriction owl:onProperty va:hasDataType;
 owl:minCardinality 1;
 .

va:hasPersistence a rdf:Property, owl:ObjectProperty;
 rdfs:label "Has persistence"@en;
 rdfs:comment "Denotes which visual channel of a chart must be specified or
might be defined if needed."@en;
 rdfs:domain va:VisualChannel;
 rdfs:range va:Persistence;
 rdfs:isDefinedBy <http://code-research.eu/ontology/visual-analytics>;
 .

owl:Restriction owl:onProperty va:hasPersistence;
 owl:minCardinality 1;
 owl:maxCardinality 1;
 .

va:hasOccurrence a rdf:Property, owl:ObjectProperty;
 rdfs:label "Has occurrence"@en;
 rdfs:comment "Denotes whether a visual channel can be set only at one times
or multiple times."@en;
 rdfs:domain va:VisualChannel;
 rdfs:range va:Occurrence;
 rdfs:isDefinedBy <http://code-research.eu/ontology/visual-analytics>;
 .

owl:Restriction owl:onProperty va:hasOccurrence;
 owl:minCardinality 1;
 owl:maxCardinality 1;
 .

va:hasVisualChannel a rdf:Property, owl:ObjectProperty;
 rdfs:label "Has visual channel"@en;
 rdfs:comment "Represents which visual channel a chart has."@en;
 rdfs:domain va:Chart;
 rdfs:range va:VisualChannel;
 rdfs:isDefinedBy <http://code-research.eu/ontology/visual-analytics>;
 .

owl:Restriction owl:onProperty va:hasVisualChannel;
 owl:minCardinality 1;
 .

va:hasChartName a rdf:Property, owl:ObjectProperty;
 rdfs:label "Has chart label"@en;
 rdfs:comment "Represents which name a chart has."@en;
 rdfs:domain va:Chart;
 rdfs:range va:ChartName;
 rdfs:isDefinedBy <http://code-research.eu/ontology/visual-analytics>;
 .

owl:Restriction owl:onProperty va:hasChartName;
 owl:minCardinality 1;
 owl:maxCardinality 1;
 .

va:cubeDimensionNominal a qb:DimensionProperty, rdf:Property, owl:ObjectProperty;
 rdfs:label "Nominal cube dimension";
rdfs:comment "This class can be used as a fallback for nominal dimensions. It should be avoided in favor of more specific dimension properties.";
 rdfs:domain qb:Observation;
 rdfs:isDefinedBy <http://code-research.eu/ontology/visual-analytics>;
 .

--- Mapping-Specific Properties -------------------------------

va:getMapping a rdf:Property, owl:ObjectProperty;
 rdfs:label "Get Mapping"@en;
 rdfs:comment "Displays the mappings for a RDF Data Cube."@en;
 rdfs:domain va:RDFDataCube;
 rdfs:range va:Mappig;
 rdfs:isDefinedBy <http://code-research.eu/ontology/visual-analytics>;
 .

owl:Restriction owl:onProperty va:getMapping;
 owl:minCardinality 1;
 .

va:hasComponentMapping a rdf:Property, owl:ObjectProperty;
 rdfs:label "Has components mapping"@en;
 rdfs:comment "Displays a particular mapping of a RDF Data Cube."@en;
 rdfs:domain va:Mappig;
 rdfs:range va:ComponentMapping;
 rdfs:isDefinedBy <http://code-research.eu/ontology/visual-analytics>;
 .

owl:Restriction owl:onProperty va:hasComponentsMapping;
 owl:minCardinality 1;
 .

va:representsCubeProperty a rdf:Property, owl:ObjectProperty;
 rdfs:label "Represents chart"@en;
 rdfs:comment "Represents the component (dimension,measure) of a RDF Data Cube, which has been mapped."@en;
 rdfs:domain va:Mapping;
 rdfs:range qb:DimensionProperty;
 rdfs:range qb:MeasureProperty;
 rdfs:isDefinedBy <http://code-research.eu/ontology/visual-analytics>;
 .

owl:Restriction owl:onProperty va:representsCubeProperty;
 owl:minCardinality 1;
 owl:maxCardinality 1;
 .

--- Dashboard-Specific Properties -------------------------------

va:visualizes a rdf:Property, owl:ObjectProperty;
 rdfs:label "visualizes"@en;
 rdfs:comment "Links a Visual Analytics Dashboard with a Data Cube or Data Slice"@en;
 rdfs:domain va:Dashboard;
 rdfs:range qb:DataSet, qb:Slice;
 rdfs:isDefinedBy <http://code-research.eu/ontology/visual-analytics>;
 .

owl:Restriction owl:onProperty va:visualizes;
 owl:minCardinality 1;
 owl:maxCardinality 1;
 .